collocation and Gauss quadrature
Gauss and Radau IIA Quadrature Formulas
Gauss Quadrature
Orthogonal Polynomials
Let $ P_n(x) $ be the Legendre polynomials orthogonal on $[-1,1]$ with weight function $ w(x) \equiv 1 $:
\[\int_{-1}^1 P_m(x)P_n(x)dx = \frac{2}{2n+1}\delta_{mn}\]The Rodrigues’ formula gives:
\[P_n(x) = \frac{1}{2^n n!}\frac{d^n}{dx^n}\left[(x^2-1)^n\right]\]Quadrature Nodes
The Gauss nodes $x_k$ are the roots of $ P_n(x) $:
\[P_n(x_k) = 0,\quad k=1,\dotsc,n\]These roots satisfy:
- Symmetry: $ x_k = -x_{n+1-k} $
- All roots are simple and lie in $(-1,1)$
Quadrature Weights
The weights are given by:
\[w_k = \int_{-1}^1 \prod_{\substack{j=1\\j\neq k}}^n \frac{x-x_j}{x_k-x_j} dx = \frac{2}{(1-x_k^2)[P_n'(x_k)]^2}\]Radau IIA Quadrature
和Legendre多项式的关系
\[R_n(x) = P_n(x) - P_{n-1}(x)\]Radau right polynomial
\[\frac{d^n}{dx^n}\left[(x+1)^n (x-1)^{n+1}\right]\]Quadrature Nodes
The Radau IIA nodes $x_k$ consist of:
- The root $ x=1 $
- The roots of $ R_{n-1}(x) $ in $(-1,1)$
Quadrature Weights
Weights are determined by:
\[w_k = \int_{-1}^1 \ell_k(x)dx,\quad \ell_k(x)\]Lobatto积分是先分部积分,然后使用Gauss-Legendre求解公式吗?
Lobatto quadrature of function $f(x)$ on interval $[-1,1]$ :
\[\int_{-1}^1 f(x) d x=\frac{2}{n(n-1)}[f(1)+f(-1)]+\sum_{i=2}^{n-1} w_i f\left(x_i\right)+R_n\]Abscissas: $x_i$ is the $(i-1)$ st zero of $P_{n-1}^{\prime}(x)$, here $P_m(x)$ denotes the standard Legendre polynomial of $m$-th degree and the dash denotes the derivative.
Weights:
\[w_i=\frac{2}{n(n-1)\left[P_{n-1}\left(x_i\right)\right]^2}, \quad x_i \neq \pm 1\]Properties Comparison
Property | Gauss | Radau IIA |
---|---|---|
Nodes | All interior | Contains $ x=1 $ |
Degree of exactness | $ 2n-1 $ | $ 2n-2 $ |
Node symmetry | Yes | No |